N90O-27328

Using Decision-Tree Classifier Systems
to Extract Knowledge from Databases*

D.C. St. Clair, Keith Hacke,

C. L. Sabharwal W.E. Bond

University of MO--Rolla McDonnell Douglas Research
Graduate Engineering Center Laboratories

St. Louis, MO 63121 St. Louis, MO 63166

ABSTRACT

One difficulty in applying artificial intelligence techniques to the solution of "real world"
problems is that the development and maintenance of many Al systems, such as those used in
diagnostics, require large amounts of human resources. At the same time, databases frequently
exist which contain information about the process(es) of interest. Recently, efforts to reduce
development and maintenance costs of Al systems have focused on using machine learning
techniques to extract knowledge from existing databases. This paper describes research conducted
at McDonnell Douglas Research Laboratories in the area of knowledge extraction using a class of
machine learmning techniques called decision-tree classifier systems. Results of this research suggest
ways of performing knowledge extraction which may be applied in numerous situations. In
addition, a measurement called the Concept Strength Metric (CSM) is described which can be used
to determine how well the resulting decision tree can differentiate between the concepts it has
learned. The CSM can be used to determine whether or not additional knowledge needs to be
extracted from the database. An experiment involving "real world" data is presented to illustrate the
concepts described.

INTRODUCTION

Applying Al techniques to solve diagnostic problems often requires that information contained
in one or more databases be converted to knowledge. One common way of performing this
conversion is to use domain experts. For example, when experts are asked to assemble a set of
rules for diagnosing a particular system, they review information from sources such as schematics
and existing maintenance databases. Then they develop a set of diagnostic concepts, generally
stated as a set of rules, which correlate diagnostic inputs with the desired diagnosis(es). Since large
amounts of human resources are required to perform this knowledge extraction, it is desirable to
automate as much of this process as possible.

Databases use attributes, A;, and their associated values, ajj, to represent information about

quantities of interest. These attributes may represent both numeric (discrete and continuous) and
nonnumeric quantities. A database is an organized set of these attributes and their values, a set of
relations among these attributes, and a language for manipulating attributes and the relationships
among them. This structure transforms raw data into information (18).

While information contained in a database may be accurate and complete, it is not knowledge.
Using information as knowledge requires identification of the pertinent logical entailments hidden
in that information. It is these logical entailments that allow inferences to be made from information
contained in the database. Identification of logical entailments is complex and is usually done by

* This work was supported by the McDonnell Douglas Independent Research and
Development program.

507

PRECEDING PAGE BLANK NOT FILMED

special algorithms (2). This paper is concerned with the automated extraction of knowledge from
databases and the representation of this knowledge in a structure that can be processed by logical
entailment algorithms (18).

The first step in performing knowledge extraction is to determine how knowledge will be
represented. While various knowledge representation schemes have been developed for expressing
concepts and their relationships to other knowledge, the relationships modeled by all these schemes
can generally be expressed in terms of first-order logic expressions (2). One well-known
knowledge-representation scheme is the rule-based system characterized by its knowledge base of
facts and rules. In this paper, all references to rules apply to any knowledge representation which is
used to model first-order logic expressions. The actual physical knowledge representation is
secondary in importance.

The second step in performing knowledge extraction is to determine which algorithm should be
used in the extraction process. One of the more popular and successful classes of algorithms which
are used for this process are called decision-tree classifier systems. These systems take training
instances as input and produce a set of rules as output. The rules output by the system are
represented in the form of one or more decision trees (3,10,11,).

Recent research has focused on the automated extraction of knowledge from existing databases
in an effort to reduce the development and maintenance costs of Al systems. This is a complex
problem since concepts may take many forms, the identification of appropriate attributes is difficult,
and sufficient information may not be available to support the formation of clear and accurate
concepts. Other factors which contribute to the complexity of this problem are the difficulty in
determining when extraction is complete and the difficulty of evaluating the knowledge produced.

The following sections describe an approach for extracting knowledge from databases which
addresses many of these difficulties. The approach described is applicable in cases where the
extracted knowledge can be represented as a set of rules. The extraction techniques use a class of
inductive machine-learning techniques called decision-tree classifier systems. The section entitled
Evaluation of Knowledge Extracted describes a metric which is useful for measuring the results of
the extraction effort. The last section shows the results obtained by extracting knowledge from a
"real" database (6).

EXTRACTION OF KNOWLEDGE FROM DATABASES

Type of Concepts to be Learned: One of the first steps in knowledge extraction is to
determine the type of concepts to be learned. For instance, if one is trying to extract diagnostic
information from a database, it is usually desirable to express the concepts being learned as rules.
Machine learning techniques, such as decision-tree classifier systems, are proficient at this form of
extraction. This approach is applicable to both numeric and nonnumeric data. However,
continuous numeric-valued attributes present special problems (13).

Uncertainty plays a major role in knowledge extraction. Uncertainty involves both the
uncertainty of facts and of rules. Fact uncertainty may be the result of noisy training examples.
Noise is hard to identify since it is difficult to differentiate noise from "exceptions to a rule."
Although several different approaches have been tried for handling noisy data (3,11), noise still
presents a difficult problem for knowledge-extraction techniques. Rule uncertainty not only
concerns the certainty with which conclusions can be asserted within a rule, but also the way in
which uncertainties are propagated along rule chains. Both types of uncertainty introduce serious
problems in knowledge extraction and continue to be active areas of research.

If the concepts to be learned are in the form of mathematical equations, standard operations

research and statistical techniques such as regression (linear and nonlinear), correlation, and
hypothesis testing may produce more satisfactory results (7). Although operations research and

508

statistical approaches are used primarily with numeric data, nonnumeric attributes can be assigned
numeric values. Once the appropriate operations research techniques have been applied, the
resulting equation(s) must then be interpreted in light of their nonnumeric counterparts 5).

The extraction techniques described below assume that the database on which extraction is to be
performed consists of a set of records. For the purpose of knowledge extraction, each record is
viewed as a set of attribute-value pairs along with one or more associated conclusions. Whether or
not the database is a single entity or a distributed database is not important. Richardson (12) has
developed an algorithm for combining information from numerous relations into single records.
Each of these records becomes a training instance to the machine learning technique.

Representation of Concepts: Learned concepts will be represented in the form of rules. For
example, the rule:

A1(a11) A Agag3) A Ax(ayy) = Cg
(D

denotes the concept: if the value of attribute A1 is a1 1, the value of attribute A4 is a43, and the

value of attribute A is a7, then Cg may be concluded. (Boolean-valued expression Aj(a;;) is true
when ajj is the value of A;.) Fig. 1 shows how rule (1) would be represented by a decision tree.

Fig. 1 Decision Tree Showing Aj(aj1) A Ag(aq3) A A2(a22)=>Cg

Individual concepts are represented as paths in the decision tree. Each internal node represents
an attribute A; while each branch descending from Aj corresponds to a specific attribute value, ;.

Each leaf node, c;, represents a conclusion out of the set C of all possible conclusions.

Since more than one conclusion may exist at a leaf node, the concept shown in Fig. 1 will be
represented by the tree shown in Fig. 2. The trees are identical with the exception of the label at the

509

Fig. 2 Decision Tree Showing Ag(agp) A Aglag3) A Ax(az2) => C(N4)

leaf node. The label, Ny, represents the set of one or more conclusions, ¢j € C occurring at this
node. The expression:

Al(a1p) A Agag3) A Ap(ap)) => C(Ng)

denotes the rule where C(NV4) is the conjunction of all cje N4. Note that: (1) multiple conclusions
may be present at any leaf node, i.e., INi| > 1, and (2) any conclusion, Cj» may be present at more

than one leaf node, i.e., Cj € Ny for more than one value of k. Similar concepts are concepts
which have the same conclusion.

The problem of extracting knowledge in the form of decision trees reduces to the problem of
constructing "correct” trees. Decision-tree classifier systems are a class of machine learnin g
techniques which can be used to construct such trees.

DECISION-TREE CLASSIFIER SYSTEMS

Decision-tree classifier systems take training instances as input and output decision trees like
that shown in Fig. 2 (3,10,11). These systems are called classifier systems because they separate
input training instances into different classes. They are also referred to as induction systems since
they induce knowledge from examples. Decision trees are frequently used to represent the results
of this classification, hence the name decision-tree classifier systems.

During construction of the tree, the decision-tree classifier must determine the best attribute to be
used to expand the tree at each node. It must also determine when no further attributes should be
added to a path of the tree. Induction of decision trees may be incremental or nonincremental. In
nonincremental induction, all training instances are processed at one time and the decision tree
created. At this point, the learning process is considered completed. In incremental induction,
learning is performed each time the decision tree is used to classify an instance. A well-known
nonincremental induction technique called ID3 was developed by Quinlan (11) and is based on
earlier work in induction by Hunt et al. (9). Two incremental versions of ID3 have been developed,;
ID4 by Schlimmer and Fisher (14) and ID5 by Utgoff (19).

510

Other types of machine learning approaches are applicable to knowledge extraction. These
include case-based reasoning(15), explanation-based learning(4), and genetic algorithms(8). They
will not be discussed in this paper.

DECIDING WHAT TO EXTRACT

The selection of the appropriate database attributes to participate in the extraction process is
critical both to the quality of the knowledge extracted and to the efficiency of the extraction process.
The choice of attributes depends on the type of concepts being learned. In many cases, the domain
expert may be able to provide advice on which attributes are likely to be important. The attributes

chosen to participate in the extraction process make up what is called the description space, viz,

D = (A{, A, Ap).

In an effort to keep the description space as small as possible, statistical and mathematical
programming techniques such as regression analysis and correlation can be used to help identify
database attributes which are dependent on each other. When selecting database attributes to be
included in the description space, it is seldom necessary to include attributes which are dependent
on others already in the set. Mathematical programming techniques can be used to help identify
linear and some types of nonlinear dependence among attributes. In some cases, simple plots of
database values may help identify appropriate attributes.

Once a candidate description space is identified, the next step is to perform knowledge
extraction using only a subset of the training instances available. This is desirable since the machine
learning mechanism being used may also help identify relationships among attributes which have
not been detected by earlier efforts. After evaluating these initial results, it may be possible to
further revise/refine the description space.

All of these efforts are designed to keep the complexity of the extraction process to a minimum.
Minimization of complexity is desirable because a database may contain a large number of
attributes. Simply using all database attributes in the knowledge extraction process would only
increase the complexity of the extraction process without adding additional knowledge.

EVALUATION OF KNOWLEDGE EXTRACTED

Since the accuracy of the concepts learned as well as the complexity of the tree constructed is
determined by both the quality and quantity of training instances and by the way the classifier
system chooses attributes for the tree, it is desirable to evaluate the "quality” of the knowledge
extracted. Knowledge quality can be measured in different ways, including the correctness and
thoroughness of the knowledge extracted and the certainty with which the knowledge structure can
differentiate between the concepts learned.

Evaluating knowledge correctness is necessary to determine how well the concepts learned
compare with what is known about the "real” world. Correctness evaluations are done in a manner
similar to verification and validation of expert systems (17). A common set of test suites 1S
evaluated first by using the extracted rules and then by domain experts. Next, these test results are
compared. This approach helps verify that the set of concepts learned is consistent with domain
experts' knowledge. Failure to adequately satisfy correctness tests may be the result of poor
attribute selection, poor extraction techniques, or an inadequate number of training instances.

In many cases, domain experts discover that the knowledge extracted is correct but not
thorough. This is evidenced by the fact that "pieces” of knowledge are found missing during the
tests for correctness. This may indicate an inadequate number of training instances in the database.
In these cases, additional knowledge may have to be added by domain experts.

511

To measure how well a decision tree differentiates between concepts, the authors developed an
approach for evaluating the quality of a learned decision tree by measuring certain characteristics of
the tree. This approach complements the work of domain experts and is especially useful in cases
where multiple conclusions exist at a leaf node, i.e. IN || > 1, for some value(s) of k. The

approach uses the Concept Strength Metric (CSM) described below.

The development of the Concept Strength Metric was motivated by the need to construct
diagnostic advisors for use in aircraft maintenance (1,16). By utilizing inductive learning systems,
itis possible to construct diagnostic advisors which can assist in maintaining their own knowledge
bases. However, one of the problems arising from such learning systems concerns the quality of
concept differentiation since it is rarely the case that all concepts will be learned perfectly.

The Concept Strength Metric value, E(Cj), for each conclusion S, 1s the weighted measurement

indicating that, given the decision-tree's current level of experience, it can uniquely differentiate
conclusion Gj. The value E(Cj) is the sum of individual weighted strengths, Ek(Cj), for ¢j at each

leaf node, viz:
A
E(c) = D Eycy,
k=1

where A is the number of leaf nodes in the tree.

The weighted strength, Ek(Cj), for conclusion ¢j at node N, is the weighted probability that
conclusion ¢j can be clearly differentiated by the path leading to node Ny. Itis calculated by
computing:

S8y 8y
d; :
2 Oik 2 S

where 5jk denotes the number of times conclusion ¢j has appeared at node N and ICI denotes the
number of possible conclusions in the tree. The frequency of ¢j occurrences in the tree is given by

n;- The frequency of all conclusions occurring at node Ny is . Note that:

IC| A
i=1 k=1

The factors
4 A n;
X 8 k T djn .
i=1 h=1

are of interest. The first, ajk’ denotes the fraction of all conclusions at node Ny which are ¢j- The

512

larger the value of Sjk’ the higher the likelihood of uniquely identifying conclusion c; at this node.
Since

ICI

o=

F1
the larger the number of conclusions at node Ny, the smaller the likelihood that all conclusions will
be uniquely differentiated at this node. If only one conclusion, say ¢, is present at node N, then

alk =1. If Cj € Nk, then ajk =0.
The factor Bjk scales %k by the fraction of ¢j occurrences at all leaf nodes. This factor scales
the current knowledge about conclusion ¢j at node N with respect to all the information about

conclusion Cj. Hence, the product, Ek(Cj) = ajk Bjk’ is the weighted measure that conclusion ¢j can
be clearly differentiated by the path leading to node N, given the current level of knowledge.

To illustrate the Concept Strength Metric, consider the tree shown in Fig. 3. The values at each
leaf node N indicate the nonzero number of times each conclusion ¢j € C has occurred at that
node. For example, at node N1, conclusion ¢3 occurred twelve times. No other conclusions

occurred at this node. This experiment contained 168 training instances with ICl = 5,1 = 65,My =

50,M3=20,M4=23,M5=10,§) =12, &, =750§3=60,54=13, and &5 = 8. Table I shows
the values of Ek(Cj) and E(Cj) for each conclusion.

Several interesting results are observable from the table. Each E(cj) in the table has a value
between zero and one. Each Eg(c;) value represents the weighted probability that conclusion c; can
be uniquely identified when tree traversal leads to Ny. Conclusion c3 is of particular interest since

it appears at two nodes and it does not appear with any other conclusions. Hence, based on the
present knowledge level of the tree, it is possible to positively identify all similar concepts whose

. C,-3 -
Ny =[es- 17] Nge[er- 30 NﬁE;,J Ng =[es- 4]

Fig. 3 Sample Tree Showing Conclusions at Each Node
513

k Ex(c) Eg(c2) Ex(c3) Eg(cq) Eg(cs)

1 0 0 0.60 0 0
2 0.18 0.54 0 0 0
3 0.31 0.0083 0 0.29 0
4 0 0 0 0.03 0.77
5 0 0 0.40 0 0
E(cj) 0.49 0.548 1 0.32 0.77

Table 1. CSM Values for Fig. 3

conclusion is ¢3. This is reflected by the fact that E(c3) = 1. It can be shown mathematically that

E(cj) = 1 whenever for each node Ny such that Cj € Nk, then ¢j is the only conclusion at Ng. Such
conclusions are said to be completely differentiated by the learned decision tree.

The next most completely differentiated set of similar concepts are those whose conclusion is c5
since E(c5) = 0.77. Conclusions c1, ¢3, and c4 are not as completely differentiated as c3 and cs.

These lower CSM values may imply that multiple concepts are present at several leaf nodes.
Individual values of E(c;) provide additional information about each conclusion. For example, the

fact that E3(c2) = 0.0083. indicates that this decision tree is a poor differentiator of cp at

node three. The cause of this poor differentiation may be the result of noise or it may be due to a
lack of training examples which contain this concept.

The E(Cj) and Ek(Cj) values can be used to determine when the decision tree has reached the

desired level of concept differentiation. They can also be used to guide the learning process by
indicating what types of additional knowledge are needed to improve the tree.

KNOWLEDGE EXTRACTION EXPERIMENT

The objective of this experiment was to extract rules from a database of iris flowers compiled by
Fisher (6). The database contained four flower-description attributes with an associated flower
type: virginica, versicolor, or setosa. Initial plots of attribute vs iris type suggested that neither
sepal length nor sepal width alone were sufficient to predict iris type since several values for each of
these attributes were associated with multiple iris types . Hence, these two attributes were chosen
for the description space.

Utgoff's ID5 (19) was chosen as the extraction mechanism. ID5 was extended to calculate
values of the CSM. Results from these experiments are shown in Table II. Given there were two
attributes; sepal width with 26 values and sepal length with 41 values; and there were 94 leaf
nodes, it can be seen that the resulting decision tree was wide and shallow. There were ten leaf
nodes which contained multiple conclusions. At the conclusion of the learning process, the training
set was used to test how accurately iris variety could be predicted. The tree produced was able to
distinctly classify only 84% of the training instances. This means that 16% of the trainin g instances
fell into one of the ten leaf nodes containing multiple conclusions.

514

Evaluation of the knowledge extracted was based primarily on how well the decision tree
differentiated between concepts. The CSM values shown in Table II indicate that the CSM value of
clearly differentiating virginica is the same as the CSM value for versicolor. The fact that
E(setosa) = 1.0 implies that the tree clearly distinguishes the setosa species, since all leaf nodes
containing setosa as a conclusion do not contain any other conclusions.

Training Instances 150

Training Attributes 2
Internal Nodes 20
Leaf Nodes 94
Leaf Nodes containing

multiple conclusions 10

E(virginica) =0.88
E(versicolor) = (.88
E(setosa) =1.00

Table II. Results of Iris Tests

CONCLUSIONS

This paper has described the general process of extracting knowledge from databases using
decision-tree classifier systems. These learning mechanisms, based on induction, extract
knowledge from input training instances and represent it in the form of decision trees. The Concept
Strength Metric (CSM) was described for measuring the amount of concept differentiation in these
decision trees. This result is important in helping to determine when sufficient knowledge
extraction has been performed. By examining values of Ek(Cj) and E(Cj), it can be decided which
conclusions require additional training instances to improve concept differentiation. The CSM may
be effectively used to evaluate concept differentiation in any decision tree. Experimental results
using the Concept Strength Metric are generating interest among practitioners in the diagnostic
community.

REFERENCES

1. Bond, W. E,, St. Clair, D. C., Flachsbart, B. B., and Vigland, A.R., Integration of an
Adaptive Diagnostic Expert System into an Avionics Test Environment, Proceedings of the
Third Annual Expert Systems in Government Conference, IEEE Computer Society,
October 1987, pp. 132-136.

2. Brachman, R.J., The Basics of Knowledge Representation, AT&T Technical Journal,
Vol. 67, No. 1, 1988, pp. 7-24.

3. Clark, P. and Niblett, T., The CN2 Induction Algorithm, Machine Learning, Vol 3, No. 4,
1989, pp. 261-284.

4. Delong, K. and Mooney, R.J., Explanation-based Learning: An Alternative View, Machine
Learning, Volume 1, 1986, pp. 145-176.

5. Draper, N. R, Smith, H., Applied Regression Analysis, 2nd ed. New York : Wiley,
1981.

515

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

Fisher, R. A., The Use of Multiple Measurements in Taxonomic Problems, Annals of
Eugenics, Vol. 7, 1936.

Hillier, F. S. and Lieberman, G. J., Introduction to Operations Research, 4th ed.,
San Francisco : Holden-Day, 1986.

Holland, J.H., Properties of the Bucket Brigade Algorithm, Proceedings of the First
International Conference on Genetic Algorithms and Their Applications,
Pittsburgh, PA: Lawrence Erlbaum, 1985, pp. 1-7.

Hunt, E. B., Martin, J., and Stone, P. J., Experiments in Induction, Academic Press,
1966.

Michalski, R. S., Mozetic, 1., Hong, J., and Lavrac, N., The Multipurpose Incremental
Learning System AQ1S and its Testing Application to Three Medical Domains. Proceedings
of the Fifth National Conference on Artificial Intelligence, Morgan Kaufmann,

1986, pp. 1041-1045.

Quinlan, J.R., Induction of Decision Trees, Machine Learning, Vol. 1, 1986, pp. 81-106.

Richardson, J. M., Deduction of a Functional Dependency From a Set of
Functional Dependencies, M.S. Thesis, University of Missouri -- Rolla, 1988.

Sabharwal, C. L., St. Clair, D. C., Hacke, K., and Bond, W. E., Representation of
Continuous Attributes in IDx Classifier Systems, Proceedings of the Fourth
International Symposium on Methodologies for Intelligent Systems: Poster
Session Program, Oak Ridge National Laboratory, ORNL/DSRD-24, October 1989,
pp. 167-176.

Schlimmer, J. C., and Fisher, D., A Case Study of Incremental Concept Induction,
Proceedings of the Fifth National Conference on Artificial Intelligence, Vol. 1,
Morgan Kauffman Publishers, Inc., August 1986 , pp- 496-501.

Slade, S., Case-based Reasoning: A Research Paradigm, Yale Department of Computer
Science, Report # YALEU/CSD/RR #644, August 1988.

St. Clair, D. C., Bond, W. E., Flachsbart, B. B., and Vigland, A. R., An Architecture for
Adaptive Learning in Rule-Based Diagnostic Expert Systems, Al in Armament Workshop
-- Diagnostics, American Institute of Aeronautics & Astronautics, March 1988. (Reprinted
from 1987 Proceedings of the Fall Joint Computer Conference, IEEE Computer
Society, October 1987, pp. 678-687.)

St. Clair, D. C., Bond, W. E., and Flachsbart, B. B., Using Output to Evaluate and Refine
Rules in Rule-Based Expert Systems, Proceedings of the Third Conference on
Artificial Intelligence for Space Applications, Part I," NASA Conference Publication
2492, November 1987, pp. 9-14.

Ullman, J. D., Principles of Database and Knowledge-base Systems, Computer
Science Press, Vol. 1, 1988, pp. 23-25..

Utgoff, P. E., ID5: An Incremental ID3, Proceedings of the Fifth International

Conference on Machine Learning, Morgan Kaufmann Publishers, Inc., June 1988,
pp. 107-120.

516

